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This article examines features of the numerical solution of a two-dimensional non- 
linear inverse problem of heat conduction in a two-layer region with a movable eX- 
ternal boundary. 

One of the problems encountered in developing convective heat transfer systems for the 
blades of gas turbines is experimental determination of the distribution of the heat-transfer 
coefficient over the surface of the internal cavity. Such a determination makes it possible 
to then evaluate its thermal stress state under service conditions. 

The method in [i] is used to accomplish this goal. Here, the blade is thermostatted in 
a melt of a high-purity metal and then, at its solidification temperature, blown with air 
for a fixed period of time. The parameters of the crust which forms during crystallization 
on the outside surface of the blade are used to calculate the amount of heat which has 
passed through its wall. 

Experiments with full-size blades undergoing cooling have shown that the crust is gener- 
ally variable in thickness. This is due to differences in the heat-transfer coefficients 
and temperatures in the channels of the internal cavity, variability of the thickness of the 
wall and the curvature of the profile, the presence of cooling intensifiers and bridges con- 
necting opposite sides of the blade, and local cooling irregularities such as are seen in 
jet cooling of the inside surface. 

Figure I shows the middle section of a typical channel-type blade undergoing cooling and 
the crust formed on its outside surface during the blowing of air through the channels of 
the internal cavity. 

The derivation of quantitative relations on heat transfer in the internal cavity re- 
quires the development of a method of interpreting experimental results which will consider 
not only design features, but also conventional representations of thermophysical relations 
and features of calculation of the thermal state. 

When numerical methods are used in the thermal state calculations to solve the heat-con- 
duction equation, on the basis of a priori considerations the entire internal cavity is broken 
down into characteristic sections in which the distributions of the heat-transfer coefficients 
and air temperature are assumed to be uniform. The mean values of the coefficients for these 
sections ~ are determined from criterional relations obtained by generalizing the results of 
thermal and hydraulic experiments under geometrically similar systems. Thus, when the above- 
described approach is used, mean values of the heat-transfer coefficient for the sections 
must be determined. 

The above method, together with a preliminary hydraulic experiment conducted to deter- 
mine the distribution of coolant flow over the channels of the internal cavity, makes it 
possible to obtain the distribution of the heat-transfer coefficient for a specific design. 
This makes it unnecessary to adapt to this design the results of a thermal experiment for 
geometrically similar systems modeling individual sections of the internal cavity. 

Thus, we need to determine values, constant over time and on the boundaries 8DI, 8D2, 
..., 8D N, of the heat-transfer coefficients =i, ~2, ---, aN from the known air temperatures 
TBI, TB= .... , TBN in corresponding channels of the internal cavity and f_rom the known posi- 
tion 8DE* of the movable boundary 8D E enclosing the region of the blade D and crust Z formed 
by the moment ~m of completion of blowing of the cavity. The temperature at each point of 
the cavity at the moment �9 = 0 is equal to the solidification temperature T~n (Fig. i). 
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Fig. i. Middle section of the blade and crust -model 
of the region of solution of the inverse heat-conduction 
problem. 

The solution of the initial three-dimensional inverse heat-conduction problem (IHP) is 
made easier by the fact that the blade geometry and, as shown by experiments, the crust on 
the blade changes little over the longitudinal axis. Heat flow along the axis is negligible 
compared to heat flow in the transverse direction. This allows us to reduce the problem to 
a two-dimensional problem in the plane of sections perpendicular to the blade axis. 

Assuming that ~i, ~2, ..-, aN are constant for the entire time of blowing, we can sug- 
gest two basically different methods of determining the heat-transfer coefficient. 

The first consists of iterative determination of values of ~i, %, ..., a N such that 
the crust geometry obtained experimentally is attained by the moment of termination of the 
blowing x m. This requires repeated solution of the direct Stefan problem [2], which in regard 
to blades for modern cooling systems leads to the necessity of developing programs for numer- 
ical solution of the Stefan problem in at least the two-dimensional formulation. 

Along with the large amount of time required to write these programs, the solution of 
the inverse problem requires a large amount of computer memory and computing time. This is 
due to the fact that the thermal conductivity of the high-purity metals used to indicate heat 
flow through the blade wall is considerably greater than the conductivity of the heat-resis- 
tant blade alloys. This in turn makes it necessary to use a finer calculating grid for the 
crust region E, where the configuration of the external boundary changes over time. The large 
amount of time needed to analyze the results of experiments under these conditions means that 
a longer time is necessary to obtain the values of =i, e2, ..., aN. 

In our opinion, the second method is preferable. It is based on familiar mathematical 
techniques [3] and the associated program usually used for two-dimensional calculation of 
the thermal state of blades undergoing cooling. The method shortens the time required to 
analyze test data and does not require solution of the two-dimensional Stefan problem in a 
two-layer with layers having different thermophysical properties. The method also makes cal- 
culation of the thermal state under service conditions more accurate, since the mathematical 
model of the blade section which is used is the same employed to analyze test results. 

The method consists of dividing the initial IHP in the region DE = ~ + I + 8D 2 into two 
IHP's which are solved in succession (Fig. I). 

The first problem is the Cauchy problem - determination of continuous and differentiable 
functions fz(~, x) and fa(m, x) on the boundary 8D from the equation 

IO~T(P, '~:)  O ~ T ( P , ' ~ ) )  OT (P, z) = a~ ~ , P E E, �9 E (0, "r,.l ( 1 )  
O~ Ox ~ Og ~ 

and the conditions 

ODz = OD, "r, -- O, 

T (o), "0 = [1 (co, -c), o) E OD, "r, E (0, ~m], 

OT (o), "0 [~ ((o, T), o~ E OD, ,x E (0, "r,J, 
Ono) 

OT (o~, "0 --q((o,  T), o)E ODz, �9 E (0, "~ra], 
Ono) 

(z) 

(B) 

(4) 

(S) 
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T (m, z) = Tso, ~ 6 aDs, �9 E (0, zm], (6 )  

aDz .... OD~ , ~ = ~,~, ( 7 )  

where  t h e  fo rm o f  t h e  b o u n d a r y  aDz* i s  known; XE and aE a r e  c o n s t a n t s ;  q(w,  ~) i s  a d i f f e r e n -  
t i a b l e  f u n c t i o n ,  c o n t i n u o u s  w i t h  r e s p e c t  t o  t h e  c o r o d i n a t e s  and t i m e ,  wh ich  i s  d e t e r m i n e d  by 
the Stefan condition: 

q (~, ~) = pQV (T) n~ (~), ~ E aD~. ( 8 ) 

The second IHP is determination of the values of ~z, ~2 .... , ~N on the boundaries ~Dz, ~D2, 
..., ~D N of the region D from the equation 

�9 OT(P, T) ( 02T(P ,  ~) 0 2 T ( P , ~ ) )  
aT = aD -i- , P E D, ~E (0, win] (9)  

Ox ~ Oy ~ 
and the conditions 

T(P,  O) = Tso, P 6  D, (10)  

~o a T  (o~, T) --  oh (T  (oJ, "r) - -  TsO, o~E aD~, "c E(O, "r~l, 
art,o (ii) 

(12)  

(13) 

T (~, T) = [i (~, ~), ~ E OD, T E (0, ~ 1 ,  

Ono 

where  ~ i  and T s i  ( i  = 1, 2 . . . . .  N) ,  X D, and a D a r e  c o n s t a n t s .  

Below we e x p l o r e  t h e  p o s s i b i l i t y  o f  n u m e r i c a l  s o l u t i o n  o f  j u s t  t h e  f i r s t  p r o b l e m ,  and 
we p r o p o s e  a method o f  o b t a i n i n g  s u c h  a s o l u t i o n .  The s e c o n d  p r o b l e m  can  be s o l v e d  by w e l l -  
known me thods  [4 ,  5 ] .  

The problem being examined is incorrect in the classical sense. AlsO, its practical 
realization is complicated by the fact that we do not know the laws of change in the velocity 
V(~) of the solidification front and the normal n~(~) to the external boundary of the skin. 
The direction of the boundary is impossible to determine even on a crust extracted from the 
melt, due to disturbances of the position of the external boundary by fluctuation errors 
associated with heat flow through the body of the blade and the skin after the cessation of 
blowing, nonuniformity of the temperature field in the melt, the presence of convective flows 
in the melt during extraction of the encrusted blade, etc. 

It should be noted that the temperature of the blade wall is usually not measured be- 
cause the placement of temperature sensors in the rather thin walls of the blade may intoler- 
ably distort the heat pattern. Also, there is a high probability that the sensors would be 
damaged when the crust is removed from the blade. 

In principle, it is possible to determine V(~) by repetition of the experiment with the 
same air flow rate but different blowing times. However, it is difficult to reproduce cooling 
conditions in commercial trials. 

Problem (1)-(8)can be simplified by taking the following into consideration. 

A zone of columnar crystals is formed on the rapidly cooling surface during crystalliza- 
tion. The direction of growth of these crystals is opposite the direction of heat flow [6] 
and coincides with the direction of maximum thermal conductivity of the crystals, i.e., with 
the direction normal to the isothermal surface. This fact was also used in (8). The above 
means that the crystalline structure of the skin can be used to determine the direction of 
the normal n~ to the boundary ~DE*. 

Figure 2 shows a photograph of the macrostructure of a zinc skin formed on the outside 
surface of a full-size blade in the case where internal cooling was intensified on the con- 
cave side and significant thickening of the skin took place. The grain boundaries are evi- 
dent in the photograph. The axes of the grains, which contain crystals with similar orienta- 
tions, are themselves oriented normal to the fixed position of the solidification front. 

We will assume that the grain boundaries are rectilinear, the thermophysical properties 
inside the grains are uniform, and the heat removed from the grains passes only through their 
bases - the sections of the surface intercepted by adjacent grain boundaries. Given these 
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Fig. 2. Macrostructure of the zinc crust 
/ 

conditions, we can examine heat transfer processes occurring in adjacent grains which are 
independent of one another. We can therefore reduce the two-dimensional IHP to a finite num- 
ber of unidimensional problems in subregions of the region I. 

Solution of the unidimensional IHP's requires a priori knowledge of the dependence of 
the velocity V(x) of the solidification front on the time. This velocity can be found by 
determining the coordinate g(x) of the front from the solution of the unidimensional Stefan 
problem: 

P(r)C(r)aT(r' r ~1 Ora ( r ~ ( r )  aT(r, Or ~) ), R,<r<~(~), (14) 

where M = 0 or I, respectively, for plane and crylindrical walls: 

T (r, 0) = Tso,, R~ ~< r ~ R,, ~ (0) = R~, (15) 

L(RI) aT(r, ~) I = a ( T ( R ~ ,  T)--Ts), (16) 
Or r=RL 

~(~) OT(r,ar ")l,=~ =: P Q - ~ -  ' (17) 

T(~, ~ ) = ~ o ,  ( 1 8 )  

where p(r), C(r), ~(r) are functions which are constant over time and continuous with respect 
to the coordinates. These functions take the values Pl, Cz, and ~i at r e [Rz, R 2 - el, and 
P2, C2, and ~2 at r ~ R 2 + ~ and change linearly at r e (R 2 - s, R 2 + ~). It was suggested 
in [7] that discontinuities in the thermophysical properties of materials be smoothed by mono- 
tonic relations, such as fourth-degree polynomials. Numerical experiments involving smoothing 
with linear and polynomial relations showed that the results of the calculations were reliable 
for practical purposes. 

We introduce the variables 

e:-= 7"---Y s 5 = R 2 - - R 1 ,  YI= R, R2 ~ r ] 
Y - - '  6 ' ' 

J t = : ~  B i = , a ' 5  F o =  %2 % , Ste C~(Ts9 ~ T s )  
% ~1 C~p~ 6~ Q 

(19) 

where ~0 is a certain time scale. 

In the new variables, Eqs. (14)-(18) take the form: 

c(z) ao  (z. = o__ (z. < z  
% Ot z ~ Oz az 

O(z, O)= l, y ~ z ~ y ~ ,  

0 @ ( z ,  t) _ B i O ( z ,  t) ,  z = g~,  
Oz 

Og8 (t) __ Ste �9 Fo 00  (z, t) , Z----y 3, at az 
o (y~, t) = 1. 

We introduce a grid of nodes equidistant from z into the theoretical region. 
the mesh of the grid. 

(20) 

(21) 

( 2 2 )  

(23) 

(24) 

Let H be 
We number the nodes beginning from the boundary of the region z = Yz 
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as I, 2 .... , N, N + i, .... NN, NN + i, where N + I is the number of the node coinciding 
with the boundary z = Y2 and NN + i is the number of the node coinciding with the solidifica- 
tion front. 

We replace the derivatives in (20)-(24) by finite-difference relations 

aO 0~+ ~ Oi a@ ~/+~ ~i+~ 

At i ' az H ' 

a ( a~ / Z/~x/2~1/2 (0~I ~i +1 ) M i~]+l ~]+I, (25) 
a z  ~ ~ z ~  (z) --a-i-: = H ~ ' 

A ~ i + l  + B i e i + l + ~ i ~ i _ l  . . . . .  i~+1 P ~i+~ H- Di = O, i 2, 3, NN; 

where ki+z/2 = ~i+i +.~i/2, zi = Yi + H(i - I); i is the number of the node; j is the number 
of the time layer; At3 is the time step, which depends on j. 

After insertion of (25) into (20)-(24) and the execution of some simple transformations, 
we obtain an implicit T-shaped finite-difference scheme with a three-diagonal matrix: 

] =  1, 2, 3 . . . . .  (26)  

Oi:= 1, ] = : 1 ,  I ~ i ~ N +  1, (27)  

O~+~-O~ + '  (1 § HBi), (28)  

O ~  1 = 1 H2 
SteFoAtJ , (29)  

where the coefficient A i and C i depend on the form of the region E and B i and D i also depend 
on the time &tJ. 

The resulting nonlinear system of algebraic equations is solved by a method similar to 
that described in [7]. It is assumed that the solidification front moves over integral nodes 
of the grid, and a value of AtJ which simultaneously satisfies (26) and (29) is determined 
by iteration. 

With a known AtJ, the system of difference equations is solved by the trial run method. 
The problem is solved first for the coefficients from the boundary z = Yz to the boundary 
z = y~ and then for the temperature 0 i in the opposite direction. 

When the temperatures ONN at the nodes closest to the solidification front obtained from 
(26) and (29) do not conform to the specified accuracy, we refine the time AtJ of movement of 
the front from one node to another and repeat the cycle. 

A program for numerical solution was written in FORTRAN for the ES computer. 

We performed a numerical study of the laws governing crystallization of zinc on a flat 
surface and on cylindrical walls made of a heat-resistant blade alloy with a wall thickness 
6 = 1-4 ~. The radius of curvature of the inside surface of the cylindrical wall R 1 = 2-32 
mm. Solidification took place on both the concave and convex sides. The range of the heat- 
transfer coefficient ~ was 250-12,000 W/m2"K, which is somewhat broader than the range seen 
in blades undergoing cooling. The air temperature was 20~ 

We analyzed laws of the change, over time, of the actual qa and nominal qn heat fluxes. 
These fluxes were determined from the formulas: 

qa =- ~ (T(~I ,  T)-- Ts), (30) 

qn := oQS (%)/(LT), (31)  

where  S(~)  i s  t h e  c r o s s - s e c t i o n a l  a r e a  o f  t h e  c r u s t  a t  t h e  moment o f  t ime  <; L i s  t h e  p e r i m -  
e t e r  o f  t h e  c o n v e c t i v e l y  c o o l e d  s u r f a c e  o f  t h e  w a l l .  

F i g u r e  3 shows t h e  f u n c t i o n s  qa(X) and qn(X) f o r  a w a l l  2 man t h i c k  when t h e r e  a r e  s i g n i f i -  
c a n t  d i f f e r e n c e s  in  c o o l i n g  c o n d i t i o n s .  For  g r e a t e r  c l a r i t y ,  t h e  h e a t  f l u x e s  a r e  r e f e r r e d  t o  
t h e  maximum v a l u e  o f  c o n v e c t i v e  h e a t  f l u x  q0 = a (Tso  - Ts)  s een  a t  t h e  moment o f  t i m e  �9 = +0. 

The n u m e r i c a l  s t u d i e s  e s t a b l i s h e d  t h e  f o l l o w i n g :  1) t h e  a c t u a l  h e a t  f l u x  m o n o t o n i c a l l y  
d e c r e a s e s  o v e r  t i m e ;  2) t h e  n o m i n a l  h e a t  f l u x  i n c r e a s e s  and r e a c h e s  a maximum a t  Fo : 2 - 5 ;  
i t  t h e n  m o n o t o n i c a l l y  d e c r e a s e s ,  a l w a y s  r e m a i n i n g  l e s s  t h a n  t h e  a c t u a l  h e a t  f l u x ;  3) t h e  d i f -  
f e r e n c e s  be tween  qa and qn a r e  no g r e a t e r  t h a n  15%; 4) a t  Fo > 5, i t  can be assumed w i t h  an 
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Fig. 3. Time change of the actual qa and nominal qn heat fluxes 
(a - flat wall, ~ = 2 mm; b - cylindrical wall, R i = 30 mm, R 2 = 
32 mm: 1 - qa/q0 with ~ = 1160 W/(m2,K); 2 - qn/q0 at ~ = 1160 
W/(m2.K); 3 - qa/q0 at ~ = 11,600 W/(m2oK); 4 - qn/q0 at ~ = 
11,600 W/(m2-K). 

accuracy sufficient for practical purposes that S(~)/~ = const for the entire range of the 
parameters studied. The latter fact makes it possible to use the measured coordinate of the 
solidification front to calculate 85/8~ in the Stefan condition (8). 

NOTATION 

ID, kE, thermal conductivity in the regions D and E, respectively; aD, aE, diffusivity 
in the regions D and ~, respectively; C, heat capacity; p, density; Q, heat of crystalliza- 
tion; q, heat flux; T, temperature; ~, time; x, y, r, coordinates; 6, wall thickness; Rl, R2, 
coordinates of the convectively cooled and external surfaces of the wall, respectively; ~(T), 
coordinate of the solidification front; =, heat-transfer coefficient; Fo = aDT/62, Fourier 
number; Tso, solidification temperature; V(~), velocity of the solidification front; n~, 
normal to the contour. 
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